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A Class of Stochastic Evolutions That Scale to the 
Porous Medium Equation 
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A class of reversible Markov jump processes on a periodic lattice is described 
and a result about their scaling behavior stated: Under diffusion scaling, the 
empirical measure converges to a solution of the porous medium equation on 
the d-dimensional torus. The process can be viewed as a randomly interacting 
configuration of sticks that evolves through exchanges of stick pieces between 
nearest neighbors through a zero-range pressure mechanism, with conservation 
of total stick length. 
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It is phys ica l ly  i m p o r t a n t  to find the microscopic  origins of  equa t ions  
descr ibing mac roscop ic  systems. A wel l -known p rob l e m of  this k ind  is the 
der iva t ion  of  the Euler  and  N a v i e r - S t o k e s  equa t ions  for fluids from the 
Hami l t on i an  dynamics  of  molecules.  The  object ive of  our  s tudy is to find 
a microscopic  mode l  of  in terac t ing  r a n d o m  processes for a macroscop ic  
system governed  by  the po rous  med ium equat ion.  In  this br ief  note  we only  
present  the result;  full detai ls  12~ will be pub l i shed  elsewhere. 

The  po rous  m e d i u m  equa t ion  or  P M E  in d space d imens ions  is the 
non l inear  hea t  equa t ion  

O , u = x A ( u  =) (1) 
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where u = u ( t , r  is a scalar function of ( t , ~ ) e ( 0 ,  c,Z)x~ Zl is the 
Laplacian acting on the ~ variable, and I," > 0 and cr > 1 are constants. The 
flow of an ideal gas through a porous medium is the application that 
named the equation. The derivation of the PME in this case involves the 
conservation of mass, Darcy's law, and equations of state. The ther- 
modynamic nature of the flow determines the value of 0r In detail, if m is 
the ratio between the specific heat at constant volume and the specific heat 
at constant pressure, then ~ = 1 + 1/m. The value of m is 1 for an isother- 
mal flow and 0.71 for air in an adiabatic flow. More details can be found 
in ref. 4. Writing 3 ( d ' ) = V . ( ~ u  ~-~ Vu) shows that the PME is a valid 
model when diffusivity depends on concentration in a power-law fashion. 
Also, the degeneracy of the coefficient causes the disturbances to propagate 
with finite speed, which is invalid in the case of the linear heat equation. 
A recent mathematical survey of the PME and numerous references can be 
found in ref. 6. 

Informally speaking, the stochastic process we study describes a con- 
figuration of sticks that evolves through random stick-breaking events. The 
rate at which a particular stick breaks depends on its length. The broken- 
off piece is added on to another randomly chosen stick, so that total stick 
length is conserved at all times. To be precise, fix ~ > 1 in the PME and a 
large integer N (this will eventually be the scaling parameter).  We arrange 
the sticks on the sites i =  (i~ . . . . .  id) of the finite d-dimensional lattice 

•a={ie•a:O<•ik<N,k=l d} N ' ' " ,  

with periodic boundary conditions. The state space of the process is 
,V'N = [0, ~ )e~. An element of ~U is a configuration x = (x;: i e  ,r ~ where N J '  

xi denotes the length of the stick at site i. The state evolves on the space 
,~)r as a Markov jump process according to the following rule: If the 
current state is x, then each stick xi waits an exponentially distributed ran- 
dom time with expectation (cr 1)x~ ~ to break. If stick Xk is the first one 
to break, pick a random length u distributed on the interval [0, Xk] with 
density ( 0 r  I ~u "--2, and a neighbor l of k at random on the lattice 
(observing periodic boundary conditions), then transfer the piece u from 
site k onto site /. The new state becomes 

( i ~ k ,  I .... k.t {Xi, 

x i = Xk- -U,  i = k  
I 
L x l  + u, i = l 

After the jump to x"" k,t, all sticks resume waiting. 
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The physical reason for the wild microscopic motions of the gas 
particles becoming organized in the macroscopic scale is the local conser- 
vation laws of mass, momentum, and energy. In our model one may view 
each stick length as a measure of the mass of a certain material. The con- 
servation of total stick length corresponds to the law of conservation of 
mass for the gas. The key feature of this microscopic dynamics is that the 
jump rate depends on the broken-off piece in a power-law fashion, in anal- 
ogy with the macroscopic model. 

Let r p/> 0, denote the probability measure on og~ under which the 
x; are independent exponentially distributed random variables with com- 
mon expectation p. Here { ~ :  p >t0} is a one-parameter family of revers- 
ible invariant measures for the process; that is, each ~ is invariant under 
the dynamics and detailed balance holds. 

The dynamics on <~N can also be described in terms of the evolution 
of the probability density of the process: If . / '~ denotes the probability 
density of the process at time t/> 0 relative to r := r t h e n f ~  solves the 
forward (Fokker-Planck) equation 

Ot" ' LNfN 

where the operator L u is defined by 

2dl ~ -f~~ 
I / - k l  = l 

Pick and fix now an initial density.f~v for the process on 5fN for each 
positive integer N. Denote by 

xN(t)=(xN(t):  i~&V%), t>~O 

the random evolution of the configuration. We follow the profile of the 
sticks by studying the empirical measure 

. lff(dO) =N---71i~ x~/(t) ~ilu(dO), 0 e J  d 

Here j--d= Md/~-d is the d-dimensional standard torus, and ll~ is regarded 
as a random measure on j~d. 

The basic assumption is that a law of large numbers holds at time 0: 
As N-~ ~ ,  It~ converges in probability to some finite measure v on j -d  as 
N ~  ~ .  This is an assumption on the sequence { f ~ } ~ = ,  of initial 
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densities. More precisely, if pU(dx) "N = .! 0 (X) cbU(dx) denotes the initial dis- 
tribution of the process, then for all smooth test functions J on ,y-a and 
every 3 > 0, 

Notice that the spatial scaling was already incorporated in the definition of 
:t N. The temporal scaling is introduced by explicitly multiplying time by 
the factor N 2. Under (3) and (4), (5) below, we have: 

T h e o r e m  1. For  every t > 0 ,  the empirical measure ltN,_,(dO) con- 
verges in probability to a deterministic measure u(t, O) dO as N ~  oo. The 
limiting profile u(t, 0) is characterized as the weak solution of the PME (1) 
on the torus y-a, with h- = (~ - 1 )!/(2d) and initial data u(0, 0) dO = v(dO). 

The last statement means that for all smooth test functions J on y,t ,  

!~_ J( O ) u( t, O)dO- !~_,~ J(O) v( dO ) = (~--1)!  ~Ij ds !~-,i uS(s' O)zlJ(O)dO 

and uniqueness is in the Lebesgue space L ~+ 1 ( ( 0 ,  (30))< .~-'-d). 

In addition to the basic assumption (3), we need two technical 
assumptions at time zero. In dimensions d~> 2, an initial moment bound is 
needed for a priori moment bounds for all t > 0: 

t" 
N - a  ] ~ , "N " x T J  0 (A') t2ON(d3. ") < + 03 (4) sup 

N J':/],v i ~ 22"(~ 

Second, to prove local equilibrium we utilize a refinement ~5) of the entropy 
method of Guo et al. (3) and for this we need an entropy bound at time 
zero, in all dimensions: 

H ( f N ) : = I  fN log ' fNdeN=o(Na+2)  as N - +  ~ (5) 
"~/iV 

Some concluding remarks: As far as we know, the class of processes 
with generators (2) has not been introduced before, except for the 
special case c~=2 studied by Suzuki and Uchiyama (5~ and Ekhaus and 
Seppfil~iinen. (21 It would be desirable to relax assumptions (4) and (5), 
especially the latter, to permit the study of the microscopic nature of the 
free boundary of the PME. Note that (5) prevents empty sites in the initial 
stick configuration. (This drawback can be lifted for ~ = 2 ;  see ref. 1) 
However, we do not require the macroscopic initial profile v to charge all 
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of .Y-'( F o r  example ,  we can take  v(dO) = uo(O) dO for any  bounded ,  con-  
t inuous  funct ion uo(O) >10. In the case d =  1, v can be any nona tomic  finite 
measure  or  even a s ingular  po in t  mass  v -- 6o. In all these cases we can take  
PoU(dx) to be an a p p r o p r i a t e  independen t  p roduc t  with en t ropy  

"N H ( J  0 ) = Co(Ndlog N) .  
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